
Solution Outlines

Jury

GCPC 2013

Jury (GCPC 2013) Solution Outlines 1 / 20



Boggle

4× 4 grid of characters
⇒ enumerate all ≈ 300 000 words

linear lookup in dictionary with 300 000
words is obviously too slow

compute trie with all dictionary words in linear time

check if a word is possible while enumerating

second option: use binary search in
sorted dictionary instead of trie
(don’t forget to prune then)

Jury (GCPC 2013) Solution Outlines 2 / 20



Boggle

4× 4 grid of characters
⇒ enumerate all ≈ 300 000 words

linear lookup in dictionary with 300 000
words is obviously too slow

compute trie with all dictionary words in linear time

check if a word is possible while enumerating

second option: use binary search in
sorted dictionary instead of trie
(don’t forget to prune then)

Jury (GCPC 2013) Solution Outlines 2 / 20



Boggle

4× 4 grid of characters
⇒ enumerate all ≈ 300 000 words

linear lookup in dictionary with 300 000
words is obviously too slow

compute trie with all dictionary words in linear time

check if a word is possible while enumerating

second option: use binary search in
sorted dictionary instead of trie
(don’t forget to prune then)

Jury (GCPC 2013) Solution Outlines 2 / 20



Booking

Assign bookings to rooms

Conflict / compatibility graph (bookings are
vertices, conflicts/compatibilities are edges)

Coloring / clique partitioning

Problem has special structure (timings)

Equals register allocation problem for variables in
data/control-flow graph

Solution: Left-Edge Algorithm (runs in at most
O(B2) (worst case))

Jury (GCPC 2013) Solution Outlines 3 / 20



Booking

Assign bookings to rooms

Conflict / compatibility graph (bookings are
vertices, conflicts/compatibilities are edges)

Coloring / clique partitioning

Problem has special structure (timings)

Equals register allocation problem for variables in
data/control-flow graph

Solution: Left-Edge Algorithm (runs in at most
O(B2) (worst case))

Jury (GCPC 2013) Solution Outlines 3 / 20



Booking

Read in bookings
convert dates to time stamps (e.g. with Java
DateFormatter)
don’t forget that 2016 is a leap year

Sort bookings by arrival date

Assign same “color” to bookings that do not
overlap (Left-Edge Algorithm)

Don’t forget the cleaning time

Jury (GCPC 2013) Solution Outlines 4 / 20



Booking

However, we don’t care for the actual room assignments
⇒ forget about Left-Edge Algorithm

Alternative solution:

Read in dates as before

Add cleaning time to departures

Store arrivals and departures individually (as
“events”) in one array

Use a flag to indicate which events are arrivals and
which ones are departures

Jury (GCPC 2013) Solution Outlines 5 / 20



Booking

However, we don’t care for the actual room assignments
⇒ forget about Left-Edge Algorithm

Alternative solution:

Read in dates as before

Add cleaning time to departures

Store arrivals and departures individually (as
“events”) in one array

Use a flag to indicate which events are arrivals and
which ones are departures

Jury (GCPC 2013) Solution Outlines 5 / 20



Booking

Sort events (dates) by time stamp (if time stamps
are equal, departures come before arrivals)
Iterature through array and maintain a counter:

increment, if event (time stamp) marks an arrival
decrement, if event (time stamp) marks a departure

Output maximum value of counter

Runs in O(B · logB + B) = O(B · logB)

Jury (GCPC 2013) Solution Outlines 6 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set

You are already at the goal
You can move directly
You can reach the goal in two moves
Two possible ways
One may be invalid
You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set
You are already at the goal

You can move directly
You can reach the goal in two moves
Two possible ways
One may be invalid
You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set
You are already at the goal
You can move directly

You can reach the goal in two moves
Two possible ways
One may be invalid
You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set
You are already at the goal
You can move directly
You can reach the goal in two moves
Two possible ways

One may be invalid
You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set
You are already at the goal
You can move directly
You can reach the goal in two moves
Two possible ways
One may be invalid

You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Chess

A B C D E F G H
1
2
3
4
5
6
7
8

Easiest problem of the set
You are already at the goal
You can move directly
You can reach the goal in two moves
Two possible ways
One may be invalid
You cannot reach the goal at all

Jury (GCPC 2013) Solution Outlines 7 / 20



Kastenlauf

read coordinates of locations
build graph;

location becomes node
insert edge if distance not greater than 1 000

in this graph: is end node reachable from start node?

DFS, or BFS, or anything...

O(n3) solutions acceptable, although better ones do
exist.

Jury (GCPC 2013) Solution Outlines 8 / 20



Kastenlauf

read coordinates of locations
build graph;

location becomes node
insert edge if distance not greater than 1 000

in this graph: is end node reachable from start node?

DFS, or BFS, or anything...

O(n3) solutions acceptable, although better ones do
exist.

Jury (GCPC 2013) Solution Outlines 8 / 20



No Trees but Flowers

Volume computation of rotational body

Integration of 1D function f (x) = a · e−x2 + b ·
√
x

V =
∫ h

0 f (x)2 · π

e−x
2

cannot be analytically integrated

Use numerical integration instead

Naive implementation usually too slow

At least trapezoidal rule required

Jury (GCPC 2013) Solution Outlines 9 / 20



No Trees but Flowers

Volume computation of rotational body

Integration of 1D function f (x) = a · e−x2 + b ·
√
x

V =
∫ h

0 f (x)2 · π
e−x

2

cannot be analytically integrated

Use numerical integration instead

Naive implementation usually too slow

At least trapezoidal rule required

Jury (GCPC 2013) Solution Outlines 9 / 20



No Trees but Flowers

Volume computation of rotational body

Integration of 1D function f (x) = a · e−x2 + b ·
√
x

V =
∫ h

0 f (x)2 · π
e−x

2

cannot be analytically integrated

Use numerical integration instead

Naive implementation usually too slow

At least trapezoidal rule required

Jury (GCPC 2013) Solution Outlines 9 / 20



How to estimate the required mesh width?

Absolute accuracy specified

Maximum relative accuracy required for largest
integral value

→ a = 10, b = 10, h = 10

Offline convergence test gives valid mesh width

Jury (GCPC 2013) Solution Outlines 10 / 20



Alignment of Discretization

Upper bound (h) may not be an integer.
Align discretization to integration bounds.

Jury (GCPC 2013) Solution Outlines 11 / 20



Peg Solitaire

Estimate the number of possible game
developments:

not more than 2 available moves/peg on average
each move eliminates one peg
2P−1 · P! = 5 160 960
for P = 8 pegs

⇒ Small enough to use backtracking (without further
improvements)

Jury (GCPC 2013) Solution Outlines 12 / 20



Peg Solitaire

Estimate the number of possible game
developments:

not more than 2 available moves/peg on average

each move eliminates one peg
2P−1 · P! = 5 160 960
for P = 8 pegs

⇒ Small enough to use backtracking (without further
improvements)

Jury (GCPC 2013) Solution Outlines 12 / 20



Peg Solitaire

Estimate the number of possible game
developments:

not more than 2 available moves/peg on average
each move eliminates one peg

2P−1 · P! = 5 160 960
for P = 8 pegs

⇒ Small enough to use backtracking (without further
improvements)

Jury (GCPC 2013) Solution Outlines 12 / 20



Peg Solitaire

Estimate the number of possible game
developments:

not more than 2 available moves/peg on average
each move eliminates one peg
2P−1 · P! = 5 160 960
for P = 8 pegs

⇒ Small enough to use backtracking (without further
improvements)

Jury (GCPC 2013) Solution Outlines 12 / 20



Peg Solitaire

Estimate the number of possible game
developments:

not more than 2 available moves/peg on average
each move eliminates one peg
2P−1 · P! = 5 160 960
for P = 8 pegs

⇒ Small enough to use backtracking (without further
improvements)

Jury (GCPC 2013) Solution Outlines 12 / 20



Ringworld

Given n intervals on a circle, choose one node inside
each interval so that no node is used twice.

First consider the problem on a line. Then a simple
greedy algorithm works:

scan the nodes from left to right,
whenever we counter the right endpoint bi of an interval
[ai , bi ], choose the leftmost available node ≥ ai .
Can be implemented in O(n log n) time with some
balanced search tree, set is good enough.

Now go back to the circle. Does the same reasoning
work?

Jury (GCPC 2013) Solution Outlines 13 / 20



Ringworld

Given n intervals on a circle, choose one node inside
each interval so that no node is used twice.
First consider the problem on a line. Then a simple
greedy algorithm works:

scan the nodes from left to right,
whenever we counter the right endpoint bi of an interval
[ai , bi ], choose the leftmost available node ≥ ai .
Can be implemented in O(n log n) time with some
balanced search tree, set is good enough.

Now go back to the circle. Does the same reasoning
work?

Jury (GCPC 2013) Solution Outlines 13 / 20



Ringworld

Given n intervals on a circle, choose one node inside
each interval so that no node is used twice.
First consider the problem on a line. Then a simple
greedy algorithm works:

scan the nodes from left to right,
whenever we counter the right endpoint bi of an interval
[ai , bi ], choose the leftmost available node ≥ ai .
Can be implemented in O(n log n) time with some
balanced search tree, set is good enough.

Now go back to the circle. Does the same reasoning
work?

Jury (GCPC 2013) Solution Outlines 13 / 20



Ringworld

If we can cut the circle in such a way that the cut
doesn’t intersect any interval, we can apply the
above method.
But what to do when we cannot find such a cut?

For each interval [ai , bi ] create one or two intervals
on [0, 1, . . . , 2m − 1]:

if ai ≤ bi create [ai , bi ] and [m + ai ,m + bi ],
otherwise create [ai ,m + bi ].

Now you can prove that if n ≤ m, the original circle
problem has a solution iff the new line problem has
a solution.
Proof formulating the question as a matching in a
bipartite graph, and applying the Hall’s theorem.

Jury (GCPC 2013) Solution Outlines 14 / 20



Ringworld

If we can cut the circle in such a way that the cut
doesn’t intersect any interval, we can apply the
above method.
But what to do when we cannot find such a cut?
For each interval [ai , bi ] create one or two intervals
on [0, 1, . . . , 2m − 1]:

if ai ≤ bi create [ai , bi ] and [m + ai ,m + bi ],
otherwise create [ai ,m + bi ].

Now you can prove that if n ≤ m, the original circle
problem has a solution iff the new line problem has
a solution.
Proof formulating the question as a matching in a
bipartite graph, and applying the Hall’s theorem.

Jury (GCPC 2013) Solution Outlines 14 / 20



Ringworld

If we can cut the circle in such a way that the cut
doesn’t intersect any interval, we can apply the
above method.
But what to do when we cannot find such a cut?
For each interval [ai , bi ] create one or two intervals
on [0, 1, . . . , 2m − 1]:

if ai ≤ bi create [ai , bi ] and [m + ai ,m + bi ],
otherwise create [ai ,m + bi ].

Now you can prove that if n ≤ m, the original circle
problem has a solution iff the new line problem has
a solution.
Proof formulating the question as a matching in a
bipartite graph, and applying the Hall’s theorem.

Jury (GCPC 2013) Solution Outlines 14 / 20



The King of the North

Classic flow problem with vertex capacities where
castle =̂ source and the (unshown) border =̂ sink

Reduce to flow problem by using vertex duplication
(in/out vertex) for the arc capacities

Perform your standard max-flow algorithm to
calculate the minimum cut

Jury (GCPC 2013) Solution Outlines 15 / 20



The King of the North

Classic flow problem with vertex capacities where
castle =̂ source and the (unshown) border =̂ sink

Reduce to flow problem by using vertex duplication
(in/out vertex) for the arc capacities

Perform your standard max-flow algorithm to
calculate the minimum cut

Jury (GCPC 2013) Solution Outlines 15 / 20



Ticket Draw

For M = m1 . . .mn, Z = z1 . . . zn, and r , compute
S(n) – the number of strings a1, . . . , an over
{0, 1, . . . , 9} of length n which

(1) represent integers smaller or equal to M − 1 and
(2) do not r -match Z , i.e. such that

zi . . . zi+r−1 6= ai . . . ai+r−1 for all i .

The number of tickets is M − S(n).

First an easier task: drop the constraint (1) and
compute F (n) – the number of strings of length n
which do not r -match Z .
Use DP and the recurrence relation:

F (n) =
r∑

i=1

9 · F (n − i)

with conditions F (n) = 0 for n < −1, F (−1) = 1/9
and F (0) = 1.

Jury (GCPC 2013) Solution Outlines 16 / 20



Ticket Draw

For M = m1 . . .mn, Z = z1 . . . zn, and r , compute
S(n) – the number of strings a1, . . . , an over
{0, 1, . . . , 9} of length n which

(1) represent integers smaller or equal to M − 1 and
(2) do not r -match Z , i.e. such that

zi . . . zi+r−1 6= ai . . . ai+r−1 for all i .

The number of tickets is M − S(n).
First an easier task: drop the constraint (1) and
compute F (n) – the number of strings of length n
which do not r -match Z .
Use DP and the recurrence relation:

F (n) =
r∑

i=1

9 · F (n − i)

with conditions F (n) = 0 for n < −1, F (−1) = 1/9
and F (0) = 1.

Jury (GCPC 2013) Solution Outlines 16 / 20



Ticket Draw

Using F (1),F (2), . . .F (n) compute S(n) via DP.

Start with S(1), . . . , S(r) and compute S(k) for
k = r + 1, . . . , n.

If zk > mk then S(k) = mk · F (k − 1) + S(k − 1).
If zk < mk then
S(k) = (mk−1) ·F (k−1) +S(k−1) +

∑r
j=2 9 ·F (k− j).

What if zk = mk?

Idea: initialize the value S(k) with mk · F (k − 1) and
continue with comparing next digits.

Running time: O(r · logM).

Jury (GCPC 2013) Solution Outlines 17 / 20



Ticket Draw

Using F (1),F (2), . . .F (n) compute S(n) via DP.

Start with S(1), . . . , S(r) and compute S(k) for
k = r + 1, . . . , n.

If zk > mk then S(k) = mk · F (k − 1) + S(k − 1).
If zk < mk then
S(k) = (mk−1) ·F (k−1) +S(k−1) +

∑r
j=2 9 ·F (k− j).

What if zk = mk?
Idea: initialize the value S(k) with mk · F (k − 1) and
continue with comparing next digits.

Running time: O(r · logM).

Jury (GCPC 2013) Solution Outlines 17 / 20



Timing

Each node’s output is ≥ 0 and sums up to 1

Evolution can be modelled as a Markov chain

⇒ compute At · ~u
(A =̂ matrix of links, t =̂ time until attack, ~u =̂ strengths)

O(t · N3) is too slow ⇒ use fast exponentiation

Compute weak point by looking at the direct
neighbourhood in O(N2)

Jury (GCPC 2013) Solution Outlines 18 / 20



Timing

Each node’s output is ≥ 0 and sums up to 1

Evolution can be modelled as a Markov chain

⇒ compute At · ~u
(A =̂ matrix of links, t =̂ time until attack, ~u =̂ strengths)

O(t · N3) is too slow ⇒ use fast exponentiation

Compute weak point by looking at the direct
neighbourhood in O(N2)

Jury (GCPC 2013) Solution Outlines 18 / 20



Timing


0.75 0.00 0.75 0.00
0.25 0.90 0.00 0.00
0.00 0.10 0.25 0.00
0.00 0.00 0.00 1.00


t

·


100
200
10

305


Each node’s output is ≥ 0 and sums up to 1

Evolution can be modelled as a Markov chain

⇒ compute At · ~u
(A =̂ matrix of links, t =̂ time until attack, ~u =̂ strengths)

O(t · N3) is too slow ⇒ use fast exponentiation

Compute weak point by looking at the direct
neighbourhood in O(N2)

Jury (GCPC 2013) Solution Outlines 18 / 20



Timing


0.75 0.00 0.75 0.00
0.25 0.90 0.00 0.00
0.00 0.10 0.25 0.00
0.00 0.00 0.00 1.00


t

·


100
200
10

305


Each node’s output is ≥ 0 and sums up to 1

Evolution can be modelled as a Markov chain

⇒ compute At · ~u
(A =̂ matrix of links, t =̂ time until attack, ~u =̂ strengths)

O(t · N3) is too slow ⇒ use fast exponentiation

Compute weak point by looking at the direct
neighbourhood in O(N2)

Jury (GCPC 2013) Solution Outlines 18 / 20



Triangles

Given two triangles a and b in 3D, are they tangled?

The problem statement excludes all degenerate
cases.

3D is difficult, so maybe try to reduce the problem
to 2D?

Take a and consider the (unique) plane P
containing it.

Jury (GCPC 2013) Solution Outlines 19 / 20



Triangles

Given two triangles a and b in 3D, are they tangled?

The problem statement excludes all degenerate
cases.

3D is difficult, so maybe try to reduce the problem
to 2D?

Take a and consider the (unique) plane P
containing it.

Jury (GCPC 2013) Solution Outlines 19 / 20



Triangles

Draw both a and the intersection of b with P .

The triangles are tangled iff the the intersection of b
with P contains a point inside and a point outside
of a (on P).

Many ways to compute the intersection, the simplest
is probably solving a system of linear equations.

Jury (GCPC 2013) Solution Outlines 20 / 20



Triangles

Draw both a and the intersection of b with P .

The triangles are tangled iff the the intersection of b
with P contains a point inside and a point outside
of a (on P).

Many ways to compute the intersection, the simplest
is probably solving a system of linear equations.

Jury (GCPC 2013) Solution Outlines 20 / 20



Triangles

Draw both a and the intersection of b with P .

The triangles are tangled iff the the intersection of b
with P contains a point inside and a point outside
of a (on P).

Many ways to compute the intersection, the simplest
is probably solving a system of linear equations.

Jury (GCPC 2013) Solution Outlines 20 / 20


